ON ROUGH IDEALS IN Γ -NEAR-RINGS

Dr. V.S.Subha

Assistant Professor, Department of Mathematics Annamalai Unversity, Annamalainagar-608002, India

Abstract

The aim of this paper is to present the concepts of congruence relation in Γ -near-rings and the lower and upper approximations of an ideal with respect to the congruence relation and introduce the notion of rough ideals in Γ -near-rings, which is a generalization of the notion of near rings. Some properties of the lower and upper approximations are discussed in Γ -near-rings.

Keywords: **F**-near-rings, Congruence relation, Rough ideals.

1 Introduction

 Γ -near-ring and the ideal theory of Γ -near-ring were introduced by Bh. Sathyanaranan[7]. For basic terminology in near-ring we refer to Pilz[6] and in Γ -near-ring.

Pawlak [3-5]introduced the theory of rough sets in 1982. It is an another independent method to deal the vagueness and uncertainty. Pawlak used equivalence class in a set as the building blocks for the construction of lower and upper approximations of a set. Many researchers studied the algebraic approach of rough sets in different algebraic structures such as [1,2,8,9]. Thillaigovindan and Subha[10] introduces rough ideals in near-rings.

The aim of this paper is to present the concepts of congruence relation in Γ -near-rings and the lower and upper approximations of an ideal with respect to the congruence relation and introduce the notion of rough ideals in Γ -near-rings, which is a generalization of the notion of near rings. Some properties of the lower and upper approximations are discussed in Γ -near-rings.

2 Preliminaries and Congruence Relation

We first recall some basic concepts for the sake of completeness. Recall from[], that a non empty set N with two binary operations + and • multiplication is called a near-ring, if it satisfies the following axioms.

(i) (N, +) is a group; (ii) (N, \bullet) is a semigroup; (iii) $(n_1 + n_2) \circ n_3 = n_1 \circ n_3 + n_2 \circ n_3$, for all $n_1, n_2, n_3 \in N$. **Definition 2.1. [7]** A Γ -near-ring is a triple where $(M, +, \Gamma)$ where

- i) (M, +) is a group
- ii) Γ is non empty set of binary operators on M such that for $\alpha \in \Gamma$, (M, +, α) is a near-ring
- iii) $x\alpha(y\beta z) = (x\alpha y)\beta z$ for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$.

In Γ -near-ring, $0\gamma x = 0$ and $(-x)\gamma y = -x\gamma y$, but in general $x\gamma 0 \neq 0$ for some $x \in M, \gamma \in \Gamma$. More precisely the above near-ring is right near-ring.

 $M_0 = \{n \in M / n\gamma 0 = 0\}$ is called the zero-symmetric part of M and

 $M = \{n \in M / n\gamma 0 = n, for all \gamma \in \Gamma\} = \{n \in M / n\gamma n' = n for all n' \in M, \gamma \in \Gamma\}$ is called the constant part of M. M is called *zero-symmetric* if $M = M_0$ and M is called constant if $M = M_c$.

Definition 2.2. A subset I of a Γ -near-ring M is called a left(*resp. right*) *ideal* of M, if

- i) (I, +) is a normal divisor of (M, +) and
- ii) $a\alpha(x + b) a\alpha b \in I$ (resp. $x\gamma b \in I$) for all $x \in I, \alpha \in \Gamma$ and $a, b \in M$.

Let I be an ideal of M and X be a non-empty subset of M. Then the sets

 $\underline{\rho}_{I}(X) = \{x \in M / x + I \subseteq X\}$ and $\overline{\rho}_{I}(X) = \{x \in M / (x + I) \cap X \neq \emptyset\}$ are called respectively the lower and upper approximations of the set *X* with respect to the ideal I.

For any ideal *I* of M and $a, b \in M$, we say *a* is congruent to *b* mod *I*, written as $a \equiv b \pmod{A}$ if $a - b \in I$.

It is easy to see that relation $a \equiv b \pmod{A}$ is an equivalence relation. Therefore, when U = M and θ is the above equivalence relation, we use the air (M, A) instead of the approximation space (U, θ) .

Also, in this case we use the symbols $\underline{\rho}_{I}(X)$ and $\overline{\rho}_{I}(X)$ instead of $\underline{\rho}(X)$ and $\overline{\rho}(X)$. If X is a subset of M, then X^{C} will be denoted by M - X.

3. SOME PROPERTIES OF ROUGH APPROXIMATIONS

In this section we study some fundamental properties of the lower and upper approximations of any subsets of a Γ -near-ring with respect to an ideal. Throughout this paper *M* denotes the Γ -near-ring unless otherwise specified.

Lemma 3.1. For every approximation space (M, I) and every subsets $X, Y \subseteq M$, the following hold:

- 1) $\underline{\rho}_{I}(M X) = M \overline{\rho}_{I}(X)$ 2) $\overline{\rho}_{I}(M - X) = M - \rho_{I}(X)$
- $2) \quad p_{I}(M-X) = M \underline{p}_{I}(X)$
- 3) $\overline{\rho}_{\mathrm{I}}(X) = (\underline{\rho}_{\mathrm{I}}(X^{\mathcal{C}}))^{\mathrm{C}}$
- 4) $\underline{\rho}_{\mathrm{I}}(\mathrm{X}) = \left(\overline{\rho}_{\mathrm{I}}(\mathrm{X}^{\mathcal{C}})\right)^{\mathrm{C}}$.

Proof. Straight forward.

Theorem 3.2. For every approximation space (M, I) and ever subsets $X, Y \subseteq M$, then the following hold:

1)
$$\underline{\rho}_{I}(X) \subseteq X \subseteq \overline{\rho}_{I}(X)$$

2) $\underline{\rho}_{I}(\emptyset) = \emptyset = \overline{\rho}_{I}(\emptyset)$
3) $\underline{\rho}_{I}(M) \subseteq M \subseteq \overline{\rho}_{I}(M)$
4) $\overline{\rho}_{I}(X \cup Y) = \overline{\rho}_{I}(X) \cup \overline{\rho}_{I}(Y)$
5) $\underline{\rho}_{I}(X \cap Y) = \underline{\rho}_{I}(X) \cap \underline{\rho}_{I}(Y)$
6) If $X \subseteq Y$, then $\underline{\rho}_{I}(X) \subseteq \overline{\rho}_{I}(Y)$ and $\overline{\rho}_{I}(X) \subseteq \overline{\rho}_{I}(Y)$
7) $\overline{\rho}_{I}(X \cap Y) \subseteq \overline{\rho}_{I}(X) \cap \overline{\rho}_{I}(Y)$
8) $\underline{\rho}_{I}(X \cup Y) \supseteq \underline{\rho}_{I}(X) \cap \overline{\rho}_{I}(Y)$
9) If J is an ideal of M such that $I \subseteq J$, then $\underline{\rho}_{I}(A) \supseteq \underline{\rho}_{I}(A)$ and $\overline{\rho}_{I}(A) \subseteq \overline{\rho}_{J}(A)$
10) $\underline{\rho}_{I}(\underline{\rho}_{I}(X)) = \underline{\rho}_{I}(X)$
11) $\overline{\rho}_{I}(\overline{\rho}_{I}(M)) = \overline{\rho}_{I}(X)$
12) $\overline{\rho}_{I}(\underline{\rho}_{I}(M)) = \overline{\rho}_{I}(X)$
13) $\underline{\rho}_{I}(\overline{\rho}_{I}(M)) = \overline{\rho}_{I}(X)$
14) $\underline{\rho}_{I}(x + I) = \overline{\rho}_{I}(x + I)$ for all $x \in M$.
15) $\underline{\rho}_{I}(X)\Gamma \underline{\rho}_{I}(Y) \subseteq \underline{\rho}_{I}(X\Gamma Y)$.

Corollary 3.4. Let (M, I) be any approximation space. Then

- (i) For every $A \subseteq M$, $\rho_I(A)$ and $\overline{\rho}_I(A)$ are definable sets
- (ii) For every $x \in M$, x + I is definable set.

Theorem 3.5. Let *I* be an ideal of *M* and *A*, *B* nonempty subsets of *M*, then $\overline{\rho}_I(A)\Gamma \overline{\rho}_I(B) = \overline{\rho}_I(A\Gamma B)$.

Proof. Let $x \in \overline{\rho}_{I}(A) \Gamma \overline{\rho}_{I}(B)$. Then $x = a\gamma b$ for some $a \in \overline{\rho}_{I}(A)$ and $a \in \overline{\rho}_{I}(B)$. There exist $y, z \in M, \gamma \in \Gamma$ such that $y \in (a + I) \cap A$ and $z \in (b + I) \cap B$. Hence $y\gamma z \in A\Gamma B$ and $y\gamma z \in (a + I)\Gamma(b + I)$. This implies that $y\gamma z \in a\gamma b + I = x + I$ and hence $a \in \overline{\rho}_{I}(A\Gamma B)$. Hence $\overline{\rho}_{I}(A)\Gamma \overline{\rho}_{I}(B) \subseteq \overline{\rho}_{I}(A\Gamma B)$. (1) On the other hand assume that $x \in \overline{\rho}_{I}(A\Gamma B)$. Then there exists $y \in M$ such that $y \in x + I$ and $y \in A\Gamma B$. This implies that $y = a_{1}\gamma b_{1}$ for some $a_{1} \in A$ and $b_{1} \in B$. Since

 $x \in y + I = a_1 \gamma b_1 + I = (a_1 + I) \Gamma(b_1 + I)$, x can be expressed as $x = x_1 \gamma x_2$ for some

 IJRAR19D1128
 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org
 891

 $x_1 \in a_1 + I$ and $x_2 \in b_1 + I$. This implies that $a_1 \in x_1 + I$ and $b_1 \in x_2 + I$ and so $y = a_1\gamma b_1$ and $(x_1 + I) \cap A \neq \emptyset$ and $(x_2 + I) \cap B \neq \emptyset$. This means that $x_1 \in \overline{\rho}_I(A)$ and $x_2 \in \overline{\rho}_I(B)$. Thus $x = x_1\gamma x_2 \in \overline{\rho}_I(A)\Gamma \overline{\rho}_I(B)$ and hence $\overline{\rho}_I(A\Gamma B) \subseteq \overline{\rho}_I(A)\Gamma \overline{\rho}_I(B)$ (2) Combining (1) and (2), we obtain $\overline{\rho}_I(A\Gamma B) = \overline{\rho}_I(A)\Gamma \overline{\rho}_I(B)$.

Theorem 3.6. Let *I* be an ideal of *M* and *A*, *B* nonempty subsets of Ň, then $\underline{\rho}_I(A)\Gamma \underline{\rho}_I(B) \subseteq \underline{\rho}_I(A\Gamma B)$.

Proof. Let $x \in M$. Suppose $x \in \underline{\rho}_I(A) \Gamma \underline{\rho}_I(B)$. Then $x = a\gamma b$ for some $a \in \underline{\rho}_I(A)$ and $b \in \underline{\rho}_I(B)$. Hence $a + I \subseteq A$ and $b + I \subseteq B$. Now $(a + I)\Gamma(b + I) \subseteq A\Gamma B$ and $a\gamma b + I \subseteq A\Gamma B$. This implies that $x + I \subseteq A\Gamma B$. Hence $x \in \underline{\rho}_I(A\Gamma B)$. Thus $\underline{\rho}_I(A)\Gamma \underline{\rho}_I(B) \subseteq \underline{\rho}_I(A\Gamma B)$.

Example 3.7. Let $N = \{0, a, b, c\}$ and $\Gamma = \{0, a, b\}$. Define addition and multiplication in *M* as follows:

+	0	a	b	c]	Г	0	a	b
0	0	a	b	c		0	0	0	0
а	а	0	c	b		a	0	a	a
b	b	c	0	a		b	0	b	b
с	с	b	a	0	-				•

Then $(M, +, \Gamma)$ is a Γ -near-ring

Let $I = \{0, a\}, A = \{b, c\}, B = \{a, b\}$. Then $\underline{\rho}_I(A) = \{x \in M / x + I \subseteq A\} = \{b, c\}$. $\underline{\rho}_I(B) = \{x \in M / x + I \subseteq B\} = \emptyset$. $\underline{\rho}_I(A)\Gamma\underline{\rho}_I(B) = \emptyset \cdot \underline{\rho}_I(A\Gamma B) = \{b\}$. Then $\underline{\rho}_I(A\Gamma B) \not\subseteq \underline{\rho}_I(A)\Gamma\underline{\rho}_I(B)$.

Theorem 3.8. Let *I* be an ideal of *M* and *A*, *B* nonempty subsets of *M*, then $\overline{\rho}_I(A) + \overline{\rho}_I(B) = \overline{\rho}_I(A + B)$.

Proof. Let $x \in \overline{\rho}_{I}(A) + \overline{\rho}_{I}(B)$. Then x = a + b for some $a \in \overline{\rho}_{I}(A)$ and $b \in \overline{\rho}_{I}(B)$. there exist $y, z \in M$ such that $y \in (a + I) \cap A$ and $z \in (b + I) \cap B$. Now $y + z \in A + B$ and $y + z \in (a + I) + (b + I) = (a + b) + I = x + I$. This shows that $x + I \cap A + B \neq \emptyset$ and hence $x \in \overline{\rho}_{I}(A + B)$. Thus $\overline{\rho}_{I}(A) + \overline{\rho}_{I}(B) \subseteq \overline{\rho}_{I}(A + B)$ (3)

Conversely, assume that $x \in \overline{\rho}_1(A + B)$. There exists $y \in M$ such that $y \in x + I$ and $y \in A + B$. This implies $y = a_1 + b_1$ for some $a_1 \in A$ and $b_1 \in B$. Since

 $x \in y + I = (a_1 + b_1) + I = (a_1 + I) + (a_1 + I), x \text{ can be expressed as } x = x_1 + x_2 \text{ for some } x_1 \in a_1 + I \text{ and } x_2 \in b_1 + I.$ This means that $a_1 \in x_1 + I$ and $b_1 \in x_2 + I$ and hence $y = a_1 + b_1$ and $(x_1 + I) \cap A \neq \emptyset$ and $(x_2 + I) \cap B \neq \emptyset$. This means that $x_1 \in \overline{\rho}_1(A)$ and $x_2 \in \overline{\rho}_1(B)$. Thus $x = x_1 + x_2 \in \overline{\rho}_1(A) + \overline{\rho}_1(B)$. Hence $\overline{\rho}_1(A + B) \subseteq \overline{\rho}_1(A) + \overline{\rho}_1(B)$ (4) Combining (3) and (4), we obtain $\overline{\rho}_1(A + B) = \overline{\rho}_1(A) + \overline{\rho}_1(B)$.

Theorem 3.9. Let *I* be an ideal of *M* and *A*, *B* nonempty subsets of *M*, then $\rho_I(A) + \rho_I(B) \subseteq \rho_I(A + B)$.

Proof. Let $x \in M$. Suppose $x \in \underline{\rho_I}(A) + \underline{\rho_I}(B)$. Then x = a + b for some $a \in \underline{\rho_I}(A)$ and $b \in \underline{\rho_I}(B)$. Hence $a + I \subseteq A$ and $b + I \subseteq B$.Now $(a + I) + (b + I) \subseteq A + B$ and $(a + I) + I \subseteq A + B$. This implies that $x + I \subseteq A + B$. Hence $x \in \underline{\rho_I}(A + B)$, and thus $\rho_I(A) + \rho_I(B) \subseteq \rho_I(A + B)$.

The reverse inclusion of the Theorem 3.9 is not true in general which is shown in the following example.

Example 3.10. Consider the same example as in Example 3.7,

$$\underline{\rho_I}(A+B) = \{0, a, b, c\};$$

$$\underline{\rho_I}(A) = \{b, c\}, \underline{\rho_I}(B) = \emptyset; \ \underline{\rho_I}(A) + \underline{\rho_I}(B) = \{b, c\}.$$

Hence $\underline{\rho}_I(A+B) \not\subseteq \underline{\rho}_I(A) + \underline{\rho}_I(B)$.

Lemma 3.11. Let I, J be two ideals of M and A a nonempty subset of M, then

- (i) $\rho_I(A) \cap \rho_J(A) \subseteq \rho_{I \cap J}(A)$
- (ii) $\overline{\rho}_{I \cap I}(A) \subseteq \overline{\rho}_{I}(A) \cap \overline{\rho}_{I}(A).$

Proof. (i) Since $I \cap J \subseteq I, J$ by Theorem 3.2(9) we have, $\underline{\rho}_I(A) \subseteq \underline{\rho}_{I \cap J}(A)$ and $\underline{\rho}_J(A) \subseteq \underline{\rho}_{I \cap J}(A)$. Hence $\underline{\rho}_I(A) \cap \underline{\rho}_J(A) \subseteq \rho_{I \cap J}(A)$.

Again $I \cap J \subseteq I, J$ we have, $\overline{\rho}_{I \cap J}(A) \subseteq \overline{\rho}_{I}(A)$ and $\overline{\rho}_{I \cap J}(A) \subseteq \overline{\rho}_{I \cap J}(A)$. Hence $\overline{\rho}_{I \cap I}(A) \subseteq \overline{\rho}_{I}(A) \cap \overline{\rho}_{I}(A)$.

This reverse inclusions of Lemma 3.11 are not true in general which is shown in the following example.

Example 3.12. Let $M = \{0, a, b, c\}$ and $\Gamma = \{0, a, b, \}$ Define addition and Γ in M as follows:

+	0	a	b	с	
0	0	a	b	c	
a	a	0	c	b	
b	b	с	0	a	
с	с	b	a	0	

Γ	0	а	b
0	0	0	0
a	0	а	0
b	0	0	b

Then $(M, +, \Gamma)$ is a Γ -near-ring.

Let $I = \{0, a\}, J = \{0, b\}$ and $A = \{0, a, c\}$. Then I and J are ideals of M. $\underline{\rho}_I(A) = \{0, a\},$ $\underline{\rho}_J(A) = \{a, c\}, \overline{\rho}_I(A) = M, \overline{\rho}_J(A) = M$ and $\overline{\rho}_{I \cap J}(A) = \{0, a, b\}, \underline{\rho}_I(A) \cap \underline{\rho}_J(A) = \{a\}, \underline{\rho}_{I \cap J}(A) = A$. $\underline{\rho}_I(A) \cap \underline{\rho}_J(A) \not\cong \underline{\rho}_{I \cap J}(A)$ and $\overline{\rho}_{I \cap J}(A) \not\cong \overline{\rho}_I(A) \cap \overline{\rho}_J(A)$.

Theorem 3.13. If *I* and *J* are two ideals (resp. sub near-rings) of *M*, then $\overline{\rho}_I(J)$ is an ideal (resp. sub near-ring) of *M*. **Proof.** Let *I* and *J* be ideals of *M* and $i, j \in \overline{\rho}_I(J)$. Then there exist $p \in (i + I) \cap J$ and $q \in (j + I) \cap J$. Since *J* is an ideal of *M*, $p - q \in J$,

$$p - q \in (i + I) - (j + I) = i + I + I - j$$
$$\subseteq i + I - j$$
$$= i - j + (j + I - j)$$
$$\subseteq i - j + I.$$

This implies that $((i - j) + J \cap J \neq \emptyset$ and so $i, j \in \overline{\rho}_I(J)$.

Assume that $x \in \overline{p}_I(J)$ and $a \in M$. Then there exists $p \in (x + I) \cap J$ such that $p \in x + I$ and $p \in J$. Since J is an ideal of $\check{N}, a + p - a \in J$ and

$$a + p - a \in a + x + I - a = a + x - a + a + I - a$$
$$\subseteq a + x - a + I.$$

This shows that $(a + x - a + I) \cap J \neq \emptyset$ and $a + x - a \in \overline{\rho}_I(J)$.

Suppose $p \in \overline{\rho}_I(J)$ and $a \in M$. There exists $j \in M$ such that $j \in (p + I) \cap J$. J being an ideal of M, $j\gamma a \in J$ and $j\gamma a \in (p + I)\gamma a = p\gamma a + I$. Thus $(p\gamma a + I) \cap J \neq \emptyset$ and $p \in \overline{a}_i(I)$. Hence, $\overline{a}_i(I) \cup V \subseteq \overline{a}_i(I)$. Let $a \in [M]$ and $p \in \overline{a}_i(I)$. So there exists $i \in (p + I) \cap J$. J since L is an ideal of

 $p \in \overline{\rho}_I(J)$. Hence $\overline{\rho}_I(J) \Gamma \check{N} \subseteq \overline{\rho}_I(J)$. Let $a, b \in M$ and $p \in \overline{\rho}_I(J)$. So there exists $i \in (p+I) \cap J$. Since J is an ideal of $M, a\gamma(b+i) - a\gamma b \in J$ and

 IJRAR19D1128
 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org
 8

893

 $a\gamma(b+i) - a\gamma b \in a\gamma(b+(p+I)) - a\gamma b \subseteq a\gamma(b+p) - a\gamma b + I.$

Thus $\{(a\gamma(b+p) - a\gamma b) + I\} \cap J \neq \emptyset$ and hence $a\gamma(b+p) - a\gamma b \in \overline{\rho}_I(J)$. Thus $\overline{\rho}_I(J)$ is an ideal of *M*.

Theorem 3.14. If *I* and *J* are two ideals (resp. sub Γ -near-rings) of *M*, then $\rho_I(J)$ is an ideal (resp. sub Γ -near-ring) of *M*.

Proof. Let *I* and *J* be two ideals of *M*. Let $x, y \in \underline{\rho_I}(J)$. Then $x + I, y + I \subseteq J$. Since *J* is an ideal of *M*, $(x + I) - (y + I) \subseteq J$ and so $x - y + I \subseteq J$. Hence $x - y \in \underline{\rho_I}(J)$. Assume that $x \in \underline{\rho_I}(J)$ and $a \in M$. This implies that $x + I \subseteq J$ and *J* being an ideal of

M, $a + (x + I) - a \subseteq J$ and $a + (x + I) - a \subseteq \rho_I(J)$. Let $x \in \rho_I(J)$ and $a \in M$. Then $x + I \subseteq J$ and $(x + I)\gamma a \subseteq J$. Hence $x\gamma a + I = (x + I)\gamma a \subseteq J$ and $x\gamma a \in \rho_I(J)$.

Again, let $p \in \rho_I(J)$ and $a\gamma b \in M$. Then $p + I \subseteq J$. Now

$$(a\gamma(b+p) - a\gamma b) + I = (a\gamma(b+p) + I - a\gamma b \subseteq J$$

because *J* is an ideal of *M*. Hence $a\gamma(b + p) - a\gamma b \in \rho_I(J)$. Thus $\rho_I(J)$ is an ideal of *M*.

4 ROUGH NEAR-RINGS AND IDEALS

In this section we introduce the notion of rough Γ -near-rings and rough ideals and study some of their properties.

Definition 4.1. Let *I* be an ideal of *M* and $\rho_I(A) = (\rho_I(A), \overline{\rho_I}(A))$ a rough set in the approximation space (M, I). If $\rho_I(A)$ and $\overline{\rho_I}(A)$ are ideals (resp. sub Γ -near-rings) of *M*, then we call $\rho_I(A)$ rough ideal (resp. Γ -near-ring).

Note that a rough sub Γ - near-ring is also called a rough Γ -near-ring. Clearly every rough ideal is a rough Γ -near-ring but the converse need not be true in general.

Lemma 4.2.

- i) Let I, J be two ideals of M, then $\rho_I(I)$ and $\rho_I(J)$ are rough ideals.
- ii) Let I be an ideal and J a sub near-ring of M, then $\rho_I(J)$ is a rough near-ring.

Proof. From Theorem 3.13 and Theorem 3.14, (i) and (ii) are clear.

Remark 4.3. If *I* is not an ideal and *J* is an ideal (resp. sub near-ring) of *M*, then $\rho_I(J)$ is not a rough ideal (resp. rough Γ -near-ring) which is shown in the following example.

Example 4.4. Let $M = \{0, a, b, c, x, y\}$ and $\Gamma = \{0, a, b, c, x\}$ Define addition and Γ in M as follows.

+	0	a	b	с	Х	у
0	0	a	b	с	х	У
а	a	0	У	Х	с	b
b	b	х	0	У	а	с
c	c	х	У	0	b	а
х	х	b	c	a	У	0
У	У	c	a	b	0	х

Γ	0	а	b	с	х
0	0	0	0	0	0
a	а	а	а	а	а
b	а	а	b	с	b
c	а	а	с	b	c
Х	0	0	Х	У	Х

Then $(M, +, \Gamma)$ is a Γ - near-ring.

Let $I = \{a, c\}, J = \{0, x, y\}$. Clearly, J is an ideal and I is not an ideal(sub Γ -near-ring). Since $0 + I = \{a, c\}, a + I = \{0, x\}, b + I = \{x, y\}, c + I = \{0, x\}, x + I = \{b, c\}$ and $y + I = \{a, c\}, \rho_I(J) = \{a, b, c\} = \overline{\rho}_I(J)$. Thus both $\rho_I(J)$ and $\overline{\rho}_I(J)$ are not ideals (sub near-rings) of M. Hence $\rho_I(J)$ is not a rough ideal (resp. rough Γ -near-ring).

Theorem 4.5. Let I, J be two ideals of M and K be a sub Γ -near-ring of M. Then

- (i) $\overline{\rho}_{I}(K)\Gamma \overline{\rho}_{I}(K) \subseteq \overline{\rho}_{I+I}(K)$
- (ii) $\underline{\rho}_I(K)\Gamma\underline{\rho}_J(K) = \underline{\rho}_{(I+J)}(K).$

Proof. (i) Let $x \in \overline{\rho}_I(K) \Gamma \overline{\rho}_J(K)$. Then $x = p\gamma q$ for some $p \in \overline{\rho}_I(K)$ and $q \in \overline{\rho}_J(K)$. This means that there exist $y \in (p + I) \cap K$ and $z \in (q + J) \cap K$ and so $\gamma \gamma z \in K$ and $xy \in (p + I)$. (q + J). This implies $\gamma \gamma z \in (p\gamma q) + I + J$. Thus $(p\gamma q + I + J) \cap K \neq \emptyset$, and $x \in \overline{\rho}_{I+J}(K)$. Hence

 $\overline{\rho}_{I}(K)\Gamma \overline{\rho}_{J}(K) \subseteq \overline{\rho}_{I+J}(K).$

(ii) Let $p\gamma q \in \underline{\rho}_I(K)\Gamma \underline{\rho}_J(K)$. then $p\in \underline{\rho}_I(K)$ and $q\in \underline{\rho}_J(K)$ and so $(p+I)\subseteq K$ and $(q+J)\subseteq K$. Now $(p+I)(q+J)\subseteq K$ and $(p\gamma q + I + J \subseteq K$. This implies $p\gamma q \in \rho_{(I+J)}(K)$.

On the other hand, since $I \subseteq I + J, J \subseteq I + J$, we have by Theorem 3.2(9). $\rho_{(I+J)}(K) \subseteq \rho_I(K)$ and

$$\underline{\rho}_{(I+J)}(K) \subseteq \underline{\rho}_J(K).$$
$$\rho_{(I+J)}(K)\Gamma\rho_{(I+J)}(K) \subseteq \rho_I(K)\Gamma\rho_J(K).$$

This means that $\rho_{(I+J)}(K) \subseteq \rho_I(K)\Gamma\rho_J(K)$.

Theorem 4.4. Let *I*, *J* be two ideals of *M* and *K* a sub near-ring of *M*. Then

(i) $\rho_{(I+J)}(K) = \rho_I(K) + \rho_J(K)$

(ii)
$$\overline{\rho}_{I+I}(K) = \overline{\rho}_I(K) + \overline{\rho}_I(K).$$

Proof. (i) Since $I \subseteq I + J$ and $J \subseteq I + J$, by Theorem 3.2(9) we have $\underline{\rho}_{(I+J)}(K) \subseteq \underline{\rho}_I(K)$ and $\underline{\rho}_{(I+J)}(K) \subseteq \underline{\rho}_J(K)$. Thus $\underline{\rho}_{(I+J)}(K) \subseteq \underline{\rho}_I(K) + \underline{\rho}_J(K)$.

Conversely assume that $k \in \rho_I(K) + \rho_I(K)$. Then k = x + y for some $x \in \rho_I(K)$ and $y \in \rho_I(K)$.

This means that $x + I \subseteq K$ and $y + J \subseteq K$. Consider k + I + J = x + y + I + J = x + y + I - y + y + J $\subseteq x + I + y + J$ $\subseteq K + K \subseteq K$.

Thus $k \in \underline{\rho}_{(I+J)}(K)$ and so $\underline{\rho}_{I}(K) + \underline{\rho}_{J}(K) \subseteq \underline{\rho}_{(I+J)}(K)$. Thus $\underline{\rho}_{I}(K) + \underline{\rho}_{J}(K) = \underline{\rho}_{(I+J)}(K)$. (ii) Since $I \subseteq I + J$ and $J \subseteq I + J$, by Theorem 3.2(9), we have $\overline{\rho}_{I}(K) \subseteq \overline{\rho}_{I+J}(K)$ and $\overline{\rho}_{J}(K) \subseteq \overline{\rho}_{I+J}(K)$.

Therefore $\overline{\rho}_{I}(K) + \overline{\rho}_{I}(K) \subseteq \overline{\rho}_{I+I}(K)$.

Conversely assume that $y \in \overline{\rho}_{I+J}(K)$. Then $(y + (I + J)) \cap K \neq \emptyset$. Now there exists $j \in J$ such that

$$(y + (I + j)) \cap K = (y + j - j + I + j) \cap K$$
$$\subseteq (y + j + I) \cap K \neq \emptyset.$$

This means that $y + j \in \overline{\rho}_I(K)$. Since $-j \in J$ and $(-j + J) \cap K = J \cap K \neq \emptyset$, being $0 \in J \cap K$, we have $-j \in \overline{\rho}_J(K)$. Consider $y = y + j - j \in \overline{\rho}_I(K) + \overline{\rho}_J(K)$. We have $\overline{\rho}_{I+J}(K) \subseteq \overline{\rho}_I(K) + \overline{\rho}_J(K)$. Thus $\overline{\rho}_I(K) + \overline{\rho}_J(K) = \overline{\rho}_{I+J}(K)$.

5.CONCLUSION

The theory of Γ -near ring and theory of rough sets have many application in various fields. In this paper is to present the concepts of congruence relation in Γ -near-rings and the lower and upper approximations of an ideal with respect to the congruence relation and introduce the notion of rough ideals in Γ -near-rings, which is a generalization of the notion of near rings. Some properties of the lower and upper approximations are discussed in Γ -near-rings. The definitions and results are extended to rings.

REFERENCES

- 1. R. Biswas and S. Nanda, *Rough Groups And Rough Subgroups*, Bulietin polish Academy Science Mathematics 42(1994) 251-254.
- 2. Z. Bonikowaski, Algebraic Structures Of Rough Sets, In: W.P.Ziarko(Ed), Rough Sets, Fuzzy Sets And Knowledge Discovery, Springer-Verlag, Berlin, 1995, pp 242-247.
- 3. Z. Pawlak, *Rough Sets*, International Journal of Information and Computer Sciences, 11(5)(1982) 341-356. Rough Prime Ideals in Semiring.
- 4. Z. Pawlak and A. Skowron, Rough Sets: Some Extensions, Information Sciences, 177 (2007) 28-40.
- 5. Z. Pawlak ,Rough sets -Theoretical aspects of reasoning about data, Kluwer Academic publishing, Dordrecht, (1991).
- 6. G. Pilz, Near-Rings, Noth-Hotland, Amsterdam, (1983)
- 7. Bh. Satyanarayana, Contribution To Near-Ring Teory Doctoral Thesis, Nagarguna University, India, (1984).
- 8. V.S.Subha, *Rough k-ideals in Semirings*, International Journal of Research Publication & Seminar, Volume 05(01) March, 2014, 117-126.
- 9. V.S.Subha, *Rough Quasi-ideals in Regular Semirings*, International Journal of Research Publication & Seminar, Volume 06(01), February, 2015, 116-123.
- 10. N.Thillaigovindan and V.S.Subha, *Rough Set Concepts Applied To Ideals in Near-Rings*, Proceedings of Dynamic Systems and Applications, 6(2012), 418-421.