ON ROUGH IDEALS IN Γ-NEAR-RINGS

Dr. V.S.Subha
Assistant Professor,Department of Mathematics
Annamalai Unversity, Annamalainagar-608002, India

Abstract

The aim of this paper is to present the concepts of congruence relation in Γ-near-rings and the lower and upper approximations of an ideal with respect to the congruence relation and introduce the notion of rough ideals in Γ-near-rings, which is a generalization of the notion of near rings. Some properties of the lower and upper approximations are discussed in Γ-near-rings.

Keywords: Γ-near-rings, Congruence relation, Rough ideals.

1 Introduction

Γ-near-ring and the ideal theory of Γ-near-ring were introduced by Bh. Sathyanaranan[7]. For basic terminology in near-ring we refer to Pilz[6] and in Γ-near-ring.

Pawlak [3-5]introduced the theory of rough sets in 1982. It is an another independent method to deal the vagueness and uncertainty. Pawlak used equivalence class in a set as the building blocks for the construction of lower and upper approximations of a set. Many researchers studied the algebraic approach of rough sets in different algebraic structures such as [1,2,8,9]. Thillaigovindan and Subha[10] introduces rough ideals in near-rings.

The aim of this paper is to present the concepts of congruence relation in Γ-near-rings and the lower and upper approximations of an ideal with respect to the congruence relation and introduce the notion of rough ideals in Γ-near-rings, which is a generalization of the notion of near rings. Some properties of the lower and upper approximations are discussed in Γ-near-rings.

2 Preliminaries and Congruence Relation

We first recall some basic concepts for the sake of completeness. Recall from[], that a non empty set N with two binary operations + and \bullet multiplication is called a near-ring, if it satisfies the following axioms.
(i) $(N,+)$ is a group; (ii) (N, \bullet) is a semigroup; (iii) $\left(n_{1}+n_{2}\right) n_{3}=n_{1} \square_{3}+n_{2} \square_{3}$, for all $n_{1}, n_{2}, n_{3} \in N$.

Definition 2.1. [7] A Γ-near-ring is a triple where $(M,+, \Gamma)$ where
i) $(\mathrm{M},+)$ is a group
ii) Γ is non empty set of binary operators on M such that for $\alpha \in \Gamma,(\mathrm{M},+, \alpha)$ is a near-ring
iii) $x \alpha(y \beta z)=(x \alpha y) \beta z$ for all $x, y, z \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$.

In Γ-near-ring, $0 \gamma x=0$ and $(-x) \gamma y=-x \gamma y$, but in general $x \gamma 0 \neq 0$ for some $x \in \mathrm{M}, \gamma \in \Gamma$. More precisely the above near-ring is right near-ring.
$M_{0}=\{n \in M / n \gamma 0=0\}$ is called the zero-symmetric part of M and $\mathrm{M}=\{n \in \mathrm{M} / n \gamma 0=n$, for all $\gamma \in \Gamma\}=\left\{n \in \mathrm{M} / n \gamma n^{\prime}=n\right.$ for all $\left.n^{\prime} \in \mathrm{M}, \gamma \in \Gamma\right\}$ is called the constant part of M. M is called zero-symmetric if $M=M_{0}$ and M is called constant if $M=M_{c}$.

Definition 2.2. A subset I of a Γ-near-ring M is called a left(resp. right) ideal of M , if
i) $(I,+)$ is a normal divisor of $(\mathrm{M},+)$ and
ii) $a \alpha(x+b)-a \alpha b \in I$ (resp. $x \gamma b \in I$) for all $x \in I, \alpha \in \Gamma$ and $a, b \in \mathrm{M}$.

Let I be an ideal of M and X be a non-empty subset of M. Then the sets $\underline{\rho}_{\mathrm{I}}(X)=\{x \in \mathrm{M} / \mathrm{x}+\mathrm{I} \subseteq X\}$ and $\bar{\rho}_{\mathrm{I}}(X)=\{x \in M /(\mathrm{x}+\mathrm{I}) \cap \mathrm{X} \neq \emptyset\}$ are called respectively the lower and upper approximations of the set X with respect to the ideal I.

For any ideal I of M and $a, b \in \mathrm{M}$, we say a is congruent to $b \bmod I$, written as $a \equiv b(\bmod A)$ if $a-b \in I$.

It is easy to see that relation $a \equiv b(\bmod A)$ is an equivalence relation. Therefore, when $U=\mathrm{M}$ and θ is the above equivalence relation, we use the air (M, A) instead of the approximation space (U, θ).

Also, in this case we use the symbols $\underline{\rho}_{\mathrm{I}}(X)$ and $\bar{\rho}_{\mathrm{I}}(X)$ instead of $\underline{\rho}(\mathrm{X})$ and $\bar{\rho}(\mathrm{X})$. If X is a subset of M , then X^{C} will be denoted by $\mathrm{M}-X$.

3. SOME PROPERTIES OF ROUGH APPROXIMATIONS

In this section we study some fundamental properties of the lower and upper approximations of any subsets of a Γ -near-ring with respect to an ideal. Throughout this paper M denotes the Γ-near-ring unless otherwise specified.

Lemma 3.1. For every approximation space (M, I) and every subsets $X, Y \subseteq \mathrm{M}$, the following hold:

1) $\underline{\rho}_{\mathrm{I}}(\mathrm{M}-X)=\mathrm{M}-\bar{\rho}_{\mathrm{I}}(X)$
2) $\bar{\rho}_{\mathrm{I}}(\mathrm{M}-X)=\mathrm{M}-\underline{\rho}_{\mathrm{I}}(X)$
3) $\bar{\rho}_{\mathrm{I}}(X)=\left(\rho_{\mathrm{I}}\left(X^{C}\right)\right)^{\mathrm{C}}$
4) $\underline{\rho}_{\mathrm{I}}(\mathrm{X})=\left(\bar{\rho}_{\mathrm{I}}\left(X^{C}\right)\right)^{\mathrm{C}}$.

Proof. Straight forward.
Theorem 3.2. For every approximation space (M, I) and ever subsets $X, Y \subseteq \mathrm{M}$, then the following hold:

1) $\quad \rho_{\mathrm{I}}(\mathrm{X}) \subseteq X \subseteq \bar{\rho}_{\mathrm{I}}(\mathrm{X})$
2) $\underline{\rho}_{\mathrm{I}}(\varnothing)=\varnothing=\bar{\rho}_{\mathrm{I}}(\varnothing)$
3) $\quad \underline{\rho}_{\mathrm{I}}(\mathrm{M}) \subseteq \mathrm{M} \subseteq \bar{\rho}_{\mathrm{I}}(\mathrm{M})$
4) $\bar{\rho}_{\mathrm{I}}(X \cup Y)=\bar{\rho}_{\mathrm{I}}(X) \cup \bar{\rho}_{\mathrm{I}}(Y)$
5) $\quad \underline{\rho}_{\mathrm{I}}(X \cap Y)=\underline{\rho}_{\mathrm{I}}(\mathrm{X}) \cap \underline{\rho}_{\mathrm{I}}(\mathrm{Y})$
6) If $X \subseteq Y$, then $\underline{\rho}_{\mathrm{I}}(\mathrm{X}) \subseteq \bar{\rho}_{\mathrm{I}}(\mathrm{Y})$ and $\bar{\rho}_{\mathrm{I}}(\mathrm{X}) \subseteq \bar{\rho}_{\mathrm{I}}(\mathrm{Y})$
7) $\bar{\rho}_{\mathrm{I}}(X \cap Y) \subseteq \bar{\rho}_{\mathrm{I}}(X) \cap \bar{\rho}_{\mathrm{I}}(Y)$
8) $\quad \underline{\rho}_{\mathrm{I}}(X \cup Y) \supseteq \underline{\rho}_{\mathrm{I}}(\mathrm{X}) \cap \underline{\rho}_{\mathrm{I}}(\mathrm{Y})$
9) If J is an ideal of M such that $I \subseteq J$, then $\underline{\rho}_{\mathrm{I}}(\mathrm{A}) \supseteq \underline{\rho}_{\mathrm{J}}(\mathrm{A})$ and $\bar{\rho}_{\mathrm{I}}(\mathrm{A}) \subseteq \bar{\rho}_{\mathrm{J}}(\mathrm{A})$
10) $\underline{\rho_{\mathrm{I}}}\left(\underline{\rho_{\mathrm{I}}}(\mathrm{X})\right)=\underline{\rho}_{\mathrm{I}}(\mathrm{X})$
11) $\bar{\rho}_{\mathrm{I}}\left(\bar{\rho}_{\mathrm{I}}(\mathrm{M})\right)=\bar{\rho}_{\mathrm{I}}(\mathrm{X})$
12) $\bar{\rho}_{\mathrm{I}}(\underline{\mathrm{I}}(\mathrm{M}))=\underline{\rho}_{\mathrm{I}}(\mathrm{X})$
13) $\underline{\rho}_{\mathrm{I}}\left(\bar{\rho}_{\mathrm{I}}(\mathrm{M})\right)=\bar{\rho}_{\mathrm{I}}(\mathrm{X})$
14) $\underline{\rho}_{\mathrm{I}}(x+\mathrm{I})=\bar{\rho}_{\mathrm{I}}(x+\mathrm{I})$ for all $x \in M$.
15) $\underline{\rho}_{\mathrm{I}}(\mathrm{X}) \Gamma \underline{\rho}_{\mathrm{I}}(\mathrm{Y}) \subseteq \underline{\rho}_{\mathrm{I}}(\mathrm{X} \Gamma \mathrm{Y})$
16) $\bar{\rho}_{\mathrm{I}}(\mathrm{X}) \Gamma \bar{\rho}_{\mathrm{I}}(\mathrm{Y}) \subseteq \bar{\rho}_{\mathrm{I}}(\mathrm{X} \Gamma \mathrm{Y})$.

Corollary 3.4. Let (M, I) be any approximation space. Then
(i) For every $A \subseteq \mathrm{M}, \underline{\rho}_{\mathrm{I}}(A)$ and $\bar{\rho}_{\mathrm{I}}(A)$ are definable sets
(ii) For every $x \in \mathrm{M}, x+I$ is definable set.

Theorem 3.5. Let I be an ideal of M and A, B nonempty subsets of M, then
$\bar{\rho}_{I}(A) \Gamma \bar{\rho}_{I}(B)=\bar{\rho}_{I}(A \Gamma B)$.
Proof. Let $x \in \bar{\rho}_{\mathrm{I}}(A) \Gamma \bar{\rho}_{\mathrm{I}}(B)$. Then $x=a \gamma b$ for some $a \in \bar{\rho}_{\mathrm{I}}(A)$ and $a \in \bar{\rho}_{\mathrm{I}}(B)$. There exist $y, z \in M, \gamma \in \Gamma$ such that $y \in(a+I) \cap A$ and $z \in(b+I) \cap B$. Hence $y \gamma z \in A \Gamma B$ and $y \gamma z \in(a+I) \Gamma(b+I)$. This implies that $y \gamma z \in a \gamma b+I=x+I$ and hence $a \in \bar{\rho}_{\mathrm{I}}(A \Gamma B)$. Hence $\bar{\rho}_{\mathrm{I}}(A) \Gamma \bar{\rho}_{\mathrm{I}}(B) \subseteq \bar{\rho}_{\mathrm{I}}(A \Gamma B)$.
On the other hand assume that $x \in \bar{\rho}_{\mathrm{I}}(А Г B)$. Then there exists $y \in M$ such that $y \in x+I$ and $y \in A Г В$. This implies that $y=a_{1} \gamma b_{1}$ for some $a_{1} \in A$ and $b_{1} \in B$. Since
$x \in y+I=a_{1} \gamma b_{1}+I=\left(a_{1}+I\right) \Gamma\left(b_{1}+I\right), x$ can be expressed as $x=x_{1} \gamma x_{2}$ for some
$x_{1} \in a_{1}+I$ and $x_{2} \in b_{1}+I$. This implies that $a_{1} \in x_{1}+I$ and $b_{1} \in x_{2}+I$ and so $y=a_{1} \gamma b_{1}$ and $\left(x_{1}+I\right) \cap A \neq \emptyset$ and $\left(x_{2}+I\right) \cap B \neq \emptyset$. This means that $x_{1} \in \bar{\rho}_{\mathrm{I}}(A)$ and $x_{2} \in \bar{\rho}_{\mathrm{I}}(B)$. Thus $x=x_{1} \gamma x_{2} \in \bar{\rho}_{\mathrm{I}}(A) \Gamma \bar{\rho}_{\mathrm{I}}(B)$ and hence $\bar{\rho}_{\mathrm{I}}(A \Gamma B) \subseteq \bar{\rho}_{\mathrm{I}}(A) \Gamma \bar{\rho}_{\mathrm{I}}(B)$
Combining (1) and (2), we obtain $\bar{\rho}_{\mathrm{I}}(A \Gamma B)=\bar{\rho}_{\mathrm{I}}(A) \Gamma \bar{\rho}_{\mathrm{I}}(B)$.
Theorem 3.6. Let I be an ideal of M and A, B nonempty subsets of N , then
$\underline{\rho}_{I}(A) \Gamma \underline{\rho}_{I}(B) \subseteq \underline{\rho}_{I}(A \Gamma B)$.
Proof. Let $x \in M$. Suppose $x \in \underline{\rho}_{I}(A) \Gamma \underline{\rho}_{I}(B)$. Then $x=a \gamma b$ for some $a \in \underline{\rho}_{I}(A)$ and $b \in \underline{\rho}_{I}(B)$. Hence $a+I \subseteq A$ and $b+$ $I \subseteq B$. Now $(a+I) \Gamma(b+I) \subseteq A \Gamma B$ and $a \gamma b+I \subseteq A \Gamma B$. This implies that $x+I \subseteq A \Gamma B$. Hence $x \in \rho_{I}(A \Gamma B)$.
Thus $\underline{\rho}_{I}(A) \Gamma \underline{\rho}_{I}(B) \subseteq \underline{\rho}_{I}(A \Gamma B)$.
Example 3.7. Let $N=\{0, a, b, c\}$ and $\Gamma=\{0, a, b\}$. Define addition and multiplication in M as follows:

+	0	a	b	c
0	0	a	b	c
a	a	0	c	b
b	b	c	0	a
c	c	b	a	0

Γ	0	a	b
0	0	0	0
a	0	a	a
b	0	b	b

Then $(M,+, \Gamma)$ is a Γ-near-ring
Let $I=\{0, a\}, A=\{b, c\}, B=\{a, b\}$. Then $\underline{\rho}_{I}(A)=\{x \in M / x+I \subseteq A\}=\{b, c\}$.
$\underline{\rho}_{I}(B)=\{x \in M / x+I \subseteq B\}=\emptyset . \underline{\rho}_{I}(A) \Gamma \underline{\rho}_{I}(B)=\emptyset . \underline{\rho}_{I}(A \Gamma B)=\{b\}$.
Then $\underline{\rho}_{I}(A \Gamma B) \nsubseteq \underline{\rho}_{I}(A) \Gamma \underline{\rho}_{I}(B)$.
Theorem 3.8. Let I be an ideal of M and A, B nonempty subsets of M, then
$\bar{\rho}_{I}(A)+\bar{\rho}_{I}(B)=\bar{\rho}_{I}(A+B)$.
Proof. Let $x \in \bar{\rho}_{\mathrm{I}}(A)+\bar{\rho}_{\mathrm{I}}(B)$. Then $x=a+b$ for some $a \in \bar{\rho}_{\mathrm{I}}(A)$ and $b \in \bar{\rho}_{\mathrm{I}}(B)$. there exist $y, z \in M$ such that $y \in$ $(a+I) \cap A$ and $z \in(b+I) \cap B$.
Now $y+z \in A+B$ and $y+z \in(a+I)+(b+I)=(a+b)+I=x+I$. This shows that $x+I \cap A+B \neq \emptyset$ and hence $x \in \bar{\rho}_{\mathrm{I}}(A+B)$. Thus
$\bar{\rho}_{\mathrm{I}}(A)+\bar{\rho}_{\mathrm{I}}(B) \subseteq \bar{\rho}_{\mathrm{I}}(A+B)$
Conversely, assume that $x \in \bar{\rho}_{\mathrm{I}}(A+B)$. There exists $y \in M$ such that $y \in x+I$ and $y \in A+B$. This implies $y=a_{1}+b_{1}$ for some $a_{1} \in A$ and $b_{1} \in B$. Since $x \in y+I=\left(a_{1}+b_{1}\right)+I=\left(a_{1}+I\right)+\left(a_{1}+I\right), x$ can be expressed as $x=x_{1}+x_{2}$ for some $x_{1} \in a_{1}+I$ and $x_{2} \in b_{1}+I$. This means that $a_{1} \in x_{1}+I$ and $b_{1} \in x_{2}+I$ and hence $y=a_{1}+b_{1}$ and $\left(x_{1}+I\right) \cap A \neq \emptyset$ and $\left(x_{2}+\right.$ $I) \cap B \neq \emptyset$. This means that $x_{1} \in \bar{\rho}_{\mathrm{I}}(A)$ and $x_{2} \in \bar{\rho}_{\mathrm{I}}(B)$. Thus $x=x_{1}+x_{2} \in \bar{\rho}_{\mathrm{I}}(A)+\bar{\rho}_{\mathrm{I}}(B)$.
Hence $\bar{\rho}_{\mathrm{I}}(A+B) \subseteq \bar{\rho}_{\mathrm{I}}(A)+\bar{\rho}_{\mathrm{I}}(B)$
Combining (3) and (4), we obtain $\bar{\rho}_{\mathrm{I}}(A+B)=\bar{\rho}_{\mathrm{I}}(A)+\bar{\rho}_{\mathrm{I}}(B)$.
Theorem 3.9. Let I be an ideal of M and A, B nonempty subsets of M, then $\underline{\rho}_{I}(A)+\underline{\rho}_{I}(B) \subseteq \underline{\rho}_{I}(A+B)$.

Proof. Let $x \in M$. Suppose $x \in \underline{\rho}_{I}(A)+\underline{\rho}_{I}(B)$. Then $x=a+b$ for some $a \in \underline{\rho}_{I}(A)$ and $b \in \underline{\rho}_{I}(B)$. Hence $a+I \subseteq A$ and $b+I \subseteq B$.Now $(a+I)+(b+I) \subseteq A+B$ and $(a+I)+I \subseteq A+B$. This implies that $x+I \subseteq A+B$. Hence $x \in \underline{\rho}_{I}(A+B)$, and thus $\underline{\rho}_{I}(A)+\underline{\rho}_{I}(B) \subseteq \underline{\rho}_{I}(A+B)$.

The reverse inclusion of the Theorem 3.9 is not true in general which is shown in the following example.
Example 3.10. Consider the same example as in Example 3.7,

$$
\begin{gathered}
\underline{\rho_{I}}(A+B)=\{0, a, b, c\} ; \\
\underline{\rho}_{I}(A)=\{b, c\}, \underline{\rho_{I}}(B)=\emptyset ; \underline{\rho}_{I}(A)+\underline{\rho}_{I}(B)=\{b, c\} .
\end{gathered}
$$

Hence $\underline{\rho_{I}}(A+B) \nsubseteq \underline{\rho_{I}}(A)+\underline{\rho}_{I}(B)$.
Lemma 3.11. Let I, J be two ideals of M and A a nonempty subset of M, then

$$
\begin{align*}
& \rho_{I}(A) \cap \rho_{J}(A) \subseteq \rho_{I \cap J}(A) \tag{i}\\
& \bar{\rho}_{I \cap J}(A) \subseteq \bar{\rho}_{I}(A) \cap \bar{\rho}_{J}(A) .
\end{align*}
$$

(ii)

Proof. (i) Since $I \cap J \subseteq I, J$ by Theorem 3.2(9) we have, $\underline{\rho}_{I}(A) \subseteq \underline{\rho}_{I \cap J}(A)$ and $\underline{\rho}_{J}(A) \subseteq \underline{\rho_{I \cap J}}(A)$. Hence $\underline{\rho}_{I}(A) \cap \underline{\rho}_{J}(A) \subseteq$ $\underline{\rho}_{\text {I }}(A)$.
Again $I \cap J \subseteq I, J$ we have, $\bar{\rho}_{I \cap J}(A) \subseteq \bar{\rho}_{I}(A)$ and $\bar{\rho}_{I \cap J}(A) \subseteq \bar{\rho}_{I \cap J}(A)$.
Hence $\bar{\rho}_{I \cap J}(A) \subseteq \bar{\rho}_{I}(A) \cap \bar{\rho}_{J}(A)$.
This reverse inclusions of Lemma 3.11 are not true in general which is shown in the following example.
Example 3.12. Let $M=\{0, a, b, c\}$ and $\Gamma=\{0, a, b$,$\} Define addition and \Gamma$ in M as follows:

+	0	a	b	c
0	0	a	b	c
a	a	0	c	b
b	b	c	0	a
c	c	b	a	0

Γ	0	a	b
0	0	0	0
a	0	a	0
b	0	0	b

Then $(M,+, \Gamma)$ is a Γ-near-ring.
Let $I=\{0, a\}, J=\{0, b\}$ and $A=\{0, a, c\}$. Then I and J are ideals of $M . \underline{\rho_{I}}(A)=\{0, a\}$,
$\underline{\rho}_{J}(A)=\{a, c\}, \bar{\rho}_{I}(A)=M, \bar{\rho}_{J}(A)=M$ and $\bar{\rho}_{I \cap J}(A)=\{0, a, b\}, \underline{\rho}_{I}(A) \cap \underline{\rho}_{J}(A)=\{a\}, \underline{\rho}_{I \cap J}(A)=A$.
$\underline{\rho}_{I}(A) \cap \underline{\rho}_{J}(A) \nsupseteq \underline{\rho}_{I \cap J}(A)$ and $\bar{\rho}_{I \cap J}(A) \nsupseteq \bar{\rho}_{I}(A) \cap \bar{\rho}_{J}(A)$.
Theorem 3.13. If I and J are two ideals (resp. sub near-rings) of M, then $\bar{\rho}_{I}(J)$ is an ideal (resp. sub near-ring) of M.
Proof. Let I and J be ideals of M and $i, j \in \bar{\rho}_{I}(J)$. Then there exist $p \in(i+I) \cap J$ and $q \in(j+I) \cap J$. Since J is an ideal of $M, p-q \in J$,

$$
\begin{aligned}
p-q \in(i+I) & -(j+I)=i+I+I-j \\
& \subseteq i+I-j \\
& =i-j+(j+I-j) \\
& \subseteq i-j+I .
\end{aligned}
$$

This implies that $\left((i-j)+J \cap J \neq \emptyset\right.$ and so $i, j \in \bar{\rho}_{I}(J)$.
Assume that $x \in \bar{\rho}_{I}(J)$ and $a \in M$. Then there exists $p \in(x+I) \cap J$ such that $p \in x+I$ and $p \in J$. Since J is an ideal of $\mathrm{N}, a+p-a \in J$ and

$$
\begin{gathered}
a+p-a \in a+x+I-a=a+x-a+a+I-a \\
\subseteq a+x-a+I .
\end{gathered}
$$

This shows that $(a+x-a+I) \cap J \neq \emptyset$ and $a+x-a \in \bar{\rho}_{I}(J)$.
Suppose $p \in \bar{\rho}_{I}(J)$ and $a \in M$. There exists $j \in M$ such that $j \in(p+I) \cap J$. J being an ideal of $M, j \gamma a \in J$ and $j \gamma a \in$ $(p+I) \gamma a=p \gamma a+I$. Thus $(p \gamma a+I) \cap J \neq \varnothing$ and
$p \in \bar{\rho}_{I}(J)$. Hence $\bar{\rho}_{I}(J) \Gamma \mathrm{N} \subseteq \bar{\rho}_{I}(J)$. Let $a, b \in M$ and $p \in \bar{\rho}_{I}(J)$. So there exists $i \in(p+I) \cap J$. Since J is an ideal of $\mathrm{M}, a \gamma(b+i)-a \gamma b \in J$ and

$$
a \gamma(b+i)-a \gamma b \in a \gamma(b+(p+I))-a \gamma b \subseteq a \gamma(b+p)-a \gamma b+I .
$$

Thus $\{(a \gamma(b+p)-a \gamma b)+I\} \cap J \neq \emptyset$ and hence $a \gamma(b+p)-a \gamma b \in \bar{\rho}_{I}(J)$. Thus $\bar{\rho}_{I}(J)$ is an ideal of M.
Theorem 3.14. If I and J are two ideals (resp. sub Γ-near-rings) of M, then $\rho_{I}(J)$ is an ideal (resp. sub Γ-near-ring) of M.
Proof. Let I and J be two ideals of M. Let $x, y \in \rho_{I}(J)$. Then $x+I, y+I \subseteq J$. Since J is an ideal of $M,(x+I)-(y+I) \subseteq J$ and so $x-y+I \subseteq J$. Hence $x-y \in \underline{\rho}_{I}(J)$. Assume that $x \in \underline{\rho}_{I}(J)$ and $a \in M$. This implies that $x+I \subseteq J$ and J being an ideal of
$M, a+(x+I)-a \subseteq J \quad$ and $a+(x+I)-a \subseteq \underline{\rho_{I}}(J)$. Let $x \in \underline{\rho_{I}}(J)$ and $a \in M$. Then $x+I \subseteq J$ and $(x+I) \gamma a \subseteq J$. Hence $x \gamma a+I=(x+I) \gamma a \subseteq J$ and $x \gamma a \in \underline{\rho_{I}}(J)$.
Again, let $p \in \underline{\rho}_{I}(J)$ and $a \gamma b \in M$. Then $p+I \subseteq J$. Now

$$
(a \gamma(b+p)-a \gamma b)+I=(a \gamma(b+p)+I-a \gamma b \subseteq J
$$

because J is an ideal of M. Hence $a \gamma(b+p)-a \gamma b \in \underline{\rho}_{I}(J)$. Thus $\underline{\rho}_{I}(J)$ is an ideal of M.

4 ROUGH NEAR-RINGS AND IDEALS

In this section we introduce the notion of rough Γ-near-rings and rough ideals and study some of their properties.
Definition 4.1. Let I be an ideal of M and $\rho_{I}(A)=\left(\rho_{I}(A), \bar{\rho}_{I}(A)\right)$ a rough set in the approximation space (M, I). If $\underline{\rho}_{I}(A)$ and $\bar{\rho}_{I}(A)$ are ideals (resp. sub Γ-near-rings) of M, then we call $\rho_{I}(A)$ rough ideal (resp. Γ-near-ring).

Note that a rough sub Γ - near-ring is also called a rough Γ-near-ring. Clearly every rough ideal is a rough Γ-near-ring but the converse need not be true in general.

Lemma 4.2.

i) Let I, J be two ideals of M, then $\rho_{I}(I)$ and $\rho_{I}(J)$ are rough ideals.
ii) Let I be an ideal and J a sub near-ring of M, then $\rho_{I}(J)$ is a rough near-ring.

Proof. From Theorem 3.13 and Theorem 3.14, (i) and (ii) are clear.
Remark 4.3. If I is not an ideal and J is an ideal (resp. sub near-ring) of M, then $\rho_{I}(J)$ is not a rough ideal (resp. rough Γ -near-ring) which is shown in the following example.

Example 4.4. Let $\mathrm{M}=\{0, a, b, c, x, y\}$ and $\Gamma=\{0, a, b, c, x\}$ Define addition and Γ in M as follows.

+	0	a	b	c	x	y
0	0	a	b	c	x	y
a	a	0	y	x	c	b
b	b	x	0	y	a	c
c	c	x	y	0	b	a
x	x	b	c	a	y	0
y	y	c	a	b	0	x

Γ	0	a	b	c	x
0	0	0	0	0	0
a	a	a	a	a	a
b	a	a	b	c	b
c	a	a	c	b	c
x	0	0	x	y	x

Then $(M,+, \Gamma)$ is a Γ - near-ring.
Let $I=\{a, c\}, J=\{0, x, y\}$. Clearly, J is an ideal and I is not an ideal(sub Γ-near-ring). Since $0+I=\{a, c\}, a+I=$ $\{0, x\}, b+I=\{x, y\}, c+I=\{0, x\}, x+I=\{b, c\}$ and $y+I=\{a, c\}, \underline{\rho_{I}}(J)=\{a, b, c\}=\bar{\rho}_{I}(J)$. Thus both $\underline{\rho}_{I}(J)$ and $\bar{\rho}_{I}(J)$ are not ideals (sub near-rings) of M. Hence $\rho_{I}(J)$ is not a rough ideal (resp. rough Γ-near-ring).

Theorem 4.5. Let I, J be two ideals of M and K be a sub Γ-near-ring of M. Then
(i) $\quad \bar{\rho}_{I}(K) \Gamma \bar{\rho}_{J}(K) \subseteq \bar{\rho}_{I+J}(K)$
(ii) $\quad \underline{\rho}_{I}(K) \Gamma \underline{\rho}_{J}(K)=\underline{\rho}_{(I+J)}(K)$.

Proof. (i) Let $x \in \bar{\rho}_{I}(K) \Gamma \bar{\rho}_{J}(K)$. Then $x=p \gamma q$ for some $p \in \bar{\rho}_{I}(K)$ and $q \in \bar{\rho}_{J}(K)$. This means that there exist $y \in(p+$ $I) \cap K$ and $z \in(q+J) \cap K$ and so $y \gamma z \in K$ and $x y \in(p+I) .(q+J)$. This implies $y \gamma z \in(p \gamma q)+I+J$. Thus $(p \gamma q+I+$ $J) \cap K \neq \emptyset$, and $x \in \bar{\rho}_{I+J}(K)$. Hence
$\bar{\rho}_{I}(K) \Gamma \bar{\rho}_{J}(K) \subseteq \bar{\rho}_{I+J}(K)$.
(ii) Let $p \gamma q \in \underline{\rho}_{I}(K) \Gamma \underline{\rho}_{J}(K)$. then $p \in \underline{\rho}_{I}(K)$ and $q \in \underline{\rho}_{J}(K)$ and so $(p+I) \subseteq K$ and $(q+J) \subseteq K$. Now $(p+I)(q+J) \subseteq K$ and $\left(p \gamma q+I+J \subseteq K\right.$. This implies $p \gamma q \in \underline{\rho}_{(I+J)}(K)$.
On the other hand, since $I \subseteq I+J, J \subseteq I+J$, we have by Theorem 3.2(9). $\underline{\rho}_{(I+J)}(K) \subseteq \underline{\rho}_{I}(K)$ and

$$
\begin{gathered}
\underline{\rho}_{(I+J)}(K) \subseteq \underline{\rho}_{J}(K) . \\
\underline{\rho}_{(I+J)}(K) \stackrel{\Gamma}{\Gamma} \underline{\rho}_{(I+J)}(K) \subseteq \underline{\rho}_{I}(K) \Gamma \underline{\rho}_{J}(K) .
\end{gathered}
$$

This means that $\underline{\rho}_{(I+J)}(K) \subseteq \underline{\rho}_{I}(K) \Gamma \underline{\rho}_{J}(K)$.
Theorem 4.4. Let I, J be two ideals of M and K a sub near-ring of M. Then
(i) $\quad \underline{\rho}_{(I+J)}(K)=\underline{\rho}_{I}(K)+\underline{\rho}_{J}(K)$
(ii)

$$
\bar{\rho}_{I+J}(K)=\bar{\rho}_{I}(K)+\bar{\rho}_{J}(K)
$$

Proof. (i) Since $I \subseteq I+J$ and $J \subseteq I+J$, by Theorem 3.2(9) we have
$\underline{\rho}_{(I+J)}(K) \subseteq \underline{\rho}_{I}(K)$ and $\underline{\rho}_{(I+J)}(K) \subseteq \underline{\rho}_{J}(K)$.
Thus $\underline{\rho}_{(I+J)}(K) \subseteq \underline{\rho}_{I}(K)+\underline{\rho}_{J}(K)$.
Conversely assume that $k \in \underline{\rho}_{I}(K)+\underline{\rho}_{J}(K)$. Then $k=x+y$ for some $x \in \underline{\rho}_{I}(K)$ and $y \in \underline{\rho}_{J}(K)$.
This means that $x+I \subseteq K$ and $y+J \subseteq K$. Consider

$$
\begin{aligned}
k+I+J & =x+y+I+J \\
& =x+y+I-y+y+J \\
& \subseteq x+I+y+J \\
& \subseteq K+K \subseteq K
\end{aligned}
$$

Thus $k \in \underline{\rho}_{(I+J)}(K)$ and so $\underline{\rho}_{I}(K)+\underline{\rho}_{J}(K) \subseteq \underline{\rho}_{(I+J)}(K)$.
Thus $\underline{\rho}_{I}(K)+\underline{\rho}_{J}(K)=\underline{\rho}_{(I+J)}(K)$.
(ii) Since $I \subseteq I+J$ and $J \subseteq I+J$, by Theorem 3.2(9), we have
$\bar{\rho}_{I}(K) \subseteq \bar{\rho}_{I+J}(K)$ and $\bar{\rho}_{J}(K) \subseteq \bar{\rho}_{I+J}(K)$.
Therefore $\bar{\rho}_{I}(K)+\bar{\rho}_{J}(K) \subseteq \bar{\rho}_{I+J}(K)$.
Conversely assume that $y \in \bar{\rho}_{I+J}(K)$. Then $(y+(I+J)) \cap K \neq \emptyset$. Now there exists $j \in J$ such that

$$
\begin{aligned}
(y+(I+j)) \cap K & =(y+j-j+I+j) \cap K \\
& \subseteq(y+j+I) \cap K \neq \emptyset
\end{aligned}
$$

This means that $y+j \in \bar{\rho}_{I}(K)$. Since $-j \in J$ and $(-j+J) \cap K=J \cap K \neq \emptyset$, being $0 \in J \cap K$, we have $-j \in \bar{\rho}_{J}(K)$. Consider $y=y+j-j \in \bar{\rho}_{I}(K)+\bar{\rho}_{J}(K)$. We have $\bar{\rho}_{I+J}(K) \subseteq \bar{\rho}_{I}(K)+\bar{\rho}_{J}(K)$. Thus $\bar{\rho}_{I}(K)+\bar{\rho}_{J}(K)=\bar{\rho}_{I+J}(K)$.

5.CONCLUSION

The theory of Γ-near ring and theory of rough sets have many application in various fields. In this paper is to present the concepts of congruence relation in Γ-near-rings and the lower and upper approximations of an ideal with respect to the congruence relation and introduce the notion of rough ideals in Γ-near-rings, which is a generalization of the notion of near rings. Some properties of the lower and upper approximations are discussed in Γ-near-rings. The definitions and results are extended to rings.

REFERENCES

1. R. Biswas and S. Nanda, Rough Groups And Rough Subgroups, Bulietin polish Academy Science Mathematics 42(1994) 251-254.
2. Z. Bonikowaski, Algebraic Structures Of Rough Sets, In: W.P.Ziarko(Ed), Rough Sets, Fuzzy Sets And Knowledge Discovery, Springer-Verlag, Berlin, 1995,pp 242-247.
3. Z. Pawlak, Rough Sets, International Journal of Information and Computer Sciences, 11(5)(1982) 341-356. Rough Prime Ideals in Semiring.
4. Z. Pawlak and A. Skowron, Rough Sets: Some Extensions, Information Sciences, 177 (2007) 28-40.
5. Z. Pawlak ,Rough sets -Theoretical aspects of reasoning about data, Kluwer Academic publishing, Dordrecht, (1991).
6. G. Pilz, Near-Rings, Noth-Hotland, Amsterdam, (1983)
7. Bh. Satyanarayana, Contribution To Near-Ring Teory Doctoral Thesis, Nagarguna University, India, (1984).
8. V.S.Subha, Rough k-ideals in Semirings, International Journal of Research Publication \& Seminar, Volume 05(01) March, 2014, 117-126.
9. V.S.Subha, Rough Quasi-ideals in Regular Semirings, International Journal of Research Publication \& Seminar, Volume 06(01), February, 2015, 116-123.
10. N.Thillaigovindan and V.S.Subha , Rough Set Concepts Applied To Ideals in Near-Rings, Proceedings of Dynamic Systems and Applications, 6(2012), 418-421.
